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Abstract

This paper describes an analytical and experimental investigation of the property of modal disparity in a vibrating

structure. For a given structure, the concept of modal disparity describes the structure’s ability to generate significant

changes in the mode shapes by some type of on-the-fly structural modification. In the present study we consider a vibrating

beam that experiences a controlled stiffness change, induced by the activation and deactivation of an electromagnetic brake

that causes a spatially localized change in the bending stiffness. Using a finite element model and an experimental

apparatus it is shown that significant amounts of energy can be shifted back and forth between sets of modes in a

systematic and predictable manner. This confirmation of modal disparity for a specific structural system provides evidence

that this concept is feasible, and thereby opens the door for a number of potential applications in passive and active control

of vibrating structures.

r 2007 Elsevier Ltd. All rights reserved.
1. Introduction

The controlled redistribution of energy in vibrating structures is at the heart of many engineering problems
with important practical applications. Modal control strategies, vibration absorbers, and some forms of
energy harvesting, all rely in one form or another on the redistribution of energy in vibrating structures from
mode to mode and, in space, from one region of the structure to another. A new methodology for design of
structures to achieve a targeted and purposeful redistribution of vibration energy was recently proposed by the
authors [1,2]. This methodology relies on modal disparity, a quantifiable property of the structure being
designed, and relies on a carefully crafted variation in the stiffness of the structure. In this paper we present
experimental results that illustrates the presence of modal disparity in a simple structure.

Stiffness variation, by itself, is not a new concept. For example, Clark [3] and Corr and Clark [4] proposed
stiffness variation of piezoelectric actuators to accomplish energy dissipation in vibration control. Kurdila
et al. [5] proved that this state-switching strategy reduces the energy of the system and is stable, and
Ramaratnam and Jalili [6] implemented this idea of ‘‘switched stiffness’’ in vibration control experiments. In
contrast to these results, where the purpose of stiffness variation is to dissipate energy, the authors [1,2]
proposed stiffness variation for modal energy redistribution which then can be used for energy absorption,
harvesting, or dissipation. Modal energy redistribution, which has also been observed in systems with
ee front matter r 2007 Elsevier Ltd. All rights reserved.
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nonlinearities [7,8], should be differentiated from earlier work on localization [9–11], and energy pumping
[12,13], where energy redistribution occurs spatially.

Stiffness variation and its effect on modal energy redistribution can be explained by means of a simple
analogy where the amount of vibration energy present in a flexible structure is represented by a certain volume
of fluid that needs to be drained away. A modal view corresponds to fluid (energy) that is distributed among a
set of discrete containers, one for each mode. Fig. 1 depicts this situation using four modes, labeled A, B, C
and D. In traditional modal control, the amount of fluid in each container has to be sensed separately and a
controller that is capable of draining fluid from all the containers is used (Fig. 1a). Now consider a situation
where the fluid in only one container, say container A (Fig. 1b), is sensed and then drained by a simple
controller. Once all the fluid is removed from this container, the overall fluid volume decreases, but fluid
remains trapped in the other containers, B, C, and D. Energy redistribution of the remaining fluid among all
the containers, including moving some fluid into container A, can be achieved by stiffness variation. One step
of stiffness variation, followed by draining of the fluid from container A, would leave fluid in the other
containers, but repeating this process back and forth between two stiffness states will drain the fluid from all
the containers.

The success of a stiffness variation approach to energy redistribution is measured by the total amount of
energy that is transferred into a target mode (container A) at each step, and the details of how much energy is
transferred out of the other modes, the source modes (containers B, C and D), at each step. The rate at which
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Fig. 1. A simple analogy to illustrate a control methodology based on the concept of modal disparity: (a) standard modal control strategy;

(b) strategy based on stiffness variation.
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energy is redistributed depends on the source modes. For instance, if a source mode in one stiffness state is
nearly identical to a source mode in the other stiffness state (e.g., B and B* in Fig. 1b), then modal energy will
drain very slowly from these modes, i.e., fluid will be essentially trapped in the corresponding containers. To
quantify the amenability of a structure to energy redistribution strategies, a measure of energy redistribution is
needed. Modal disparity is such measure. It is a property of the structure, as well as of the device introduced to
effect the change in stiffness.

In the earlier work by the authors, [1,2], modal disparity of structures with variable stiffness were computed
and simulation results of modal energy redistribution were provided. The objective of this paper is to
experimentally demonstrate modal energy redistribution in a clamped–clamped beam with a variable stiffness
joint. A mathematical model of the beam using finite elements is presented in Section 2. The mechanics of
stiffness variation is discussed in Section 3. A modal coordinate description is provided in Section 4.
Simulation results are presented in Section 5; they provide a benchmark for the experimental results presented
in Section 6. Concluding remarks are provided in Section 7.

2. Finite element model

In this section we review the procedure to analyze the free vibration of a beam with a mid-span hinge, as
shown in Fig. 2. The beam is clamped at both ends and the hinge can be locked or released to switch from one
stiffness state to another. Assuming Euler–Bernoulli beam theory, the equation of motion of the beam in the
x–y plane can be written as follows:

EIy0000 þm €y ¼ 0 if x 2 ð0;L=2Þ or x 2 ðL=2;LÞ,

yð0; tÞ ¼ yðL; tÞ ¼ 0,

y0ð0; tÞ ¼ y0ðL; tÞ ¼ 0,

yððL=2Þ�; tÞ ¼ yððL=2Þþ; tÞ,

y000ððL=2Þ�; tÞ ¼ y000ððL=2Þþ; tÞ (1)

and in stiffness state a: hinge released

y00ððL=2Þ�; tÞ ¼ 0,

y00ððL=2Þþ; tÞ ¼ 0, (2)

while in stiffness state b: hinge locked

y0ððL=2Þ�; tÞ ¼ y0ððL=2Þþ; tÞ,

y00ððL=2Þ�; tÞ ¼ y00ððL=2Þþ; tÞ. (3)

In Eq. (1), E is the modulus of elasticity, I is area moment of inertia, and m is the mass per unit length of the
beam.

The beam is modeled using N standard (cubic) finite elements, with two degrees of freedom per node
(translation and rotation about the z-axis). To facilitate the modeling of the hinge in its two states, the node at
x ¼ L=2 has two rotational degrees of freedom, yl and yr, corresponding to y0ðL=2�; tÞ and y0ðL=2þ; tÞ,
respectively. In stiffness state a, the hinge is assumed to be free and yl and yr are independent. However, in
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Fig. 2. A flexible clamped–clamped beam hinged in the middle.
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Fig. 3. The hinge model.
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Fig. 4. Action–reaction pair of impulsive moments.
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stiffness state b, the hinge is locked and the constraint yl
¼ yr has to be enforced. This is accomplished by

adding a penalty of magnitude 1
2

krðy
l
� yr
Þ
2 to the strain energy, that is, by adding a rotational stiffness

Kr ¼ kr

1 �1

�1 1

� �
, (4)

to the global stiffness matrix. The parameter kr is set to zero in the stiffness state a and to a large, positive
value in stiffness state b. With the additional degree of freedom (in rotation) for the node at x ¼ L=2, the finite
element model has ð2N � 1Þ degrees of freedom.

The model of the hinge is shown schematically in Fig. 3. A lumped mass M is added at the central node to
account for the mass of the hinge and the electromagnetic brake.
3. Mechanics of stiffness variation using a brake

The transition from stiffness state a to stiffness state b is achieved by activating an electromagnetic brake.
The activation of the brake occurs over a brief interval of time and results in the application of an action-

reaction pair of impulsive moments to the middle node, as shown in Fig. 4. If t 2 ½t�ab; t
þ
ab� denotes the

activation time, the effect of the impulsive moments can be mathematically described by the relations

Y ðt�abÞ ¼ Y ðtþabÞ,

M _Y ðt�abÞ þ Ia!b ¼M _Y ðtþabÞ, (5)

where M is the mass matrix and Y is the vector of nodal degrees of freedom. Ia!b is the impulse vector with
nonzero entries corresponding to the coordinates yl and yr and has the form

Ia!b ¼ ½0; . . . ;C;�C; . . . ; 0�T; C ¼

Z tþab

t�ab

tðtÞdt, (6)

where C is the impulse and t is the impulsive moment. The displacements and velocities in stiffness

state b right after activation of the brake, Y ðtþabÞ and
_Y ðtþabÞ, are calculated from the values of Y ðt�abÞ and

_Y ðt�abÞ

using Eq. (5). Although C is initially unknown, Eq. (5) can be solved without a problem since two elements of
_Y ðtþabÞ, namely _yl and _yr, are equal.

The transition from stiffness state b to stiffness state a is achieved by releasing the brake. If t 2 ½t�ba; t
þ
ba�

denotes the brief time interval over which the brake is released, the degrees of freedom and their velocities just
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prior to and after release of the brake are the same, i.e.

Y ðt�baÞ ¼ Y ðtþbaÞ;
_Y ðt�baÞ ¼ _Y ðtþbaÞ. (7)

Eqs. (5) and (7) describe the behavior of the system during the time intervals t 2 ½t�ab; t
þ
ab� and t 2 ½t�ba; t

þ
ba�.

At all other times, the beam behaves as a clamped–clamped beam with a frictionless hinge at mid-span
(stiffness state a) or a clamped–clamped beam (stiffness state b). With this notation, the stiffness parameter kr

which was introduced in Section 2 is zero when in stiffness state a and when in stiffness state b is some large

positive number k1 chosen to enforce the constraint yl
¼ yr.

4. Modal coordinate description

Let fi and ci denote the ith normalized mode shapes of the beam in stiffness state a and stiffness state b,
respectively, and let miðtÞ and niðtÞ denote the corresponding modal displacements. In the two stiffness states,
the vector of nodal degrees of freedom can be expressed as

Y ðtÞ ¼

P2N�1
i¼1 miðtÞfi stiffness state a;P2N�1
i¼1 niðtÞci stiffness state b:

(
(8)

The transition from stiffness state a to stiffness state b, mathematically described by Eq. (5), can now be
rewritten as X2N�1

i¼1

miðt
�
abÞfi ¼

X2N�1

i¼1

niðt
þ
abÞci,

M
X2N�1

i¼1

_miðt
�
abÞfi þ Ia!b ¼M

X2N�1

i¼1

_niðt
þ
abÞci. (9)

Using Eq. (9), the modal displacements and velocities, njðt
þ
abÞ and _njðt

þ
abÞ, can be expressed in terms of mjðt

�
abÞ

and _mjðt
�
abÞ as follows:

njðt
þ
abÞ ¼

X2N�1

i¼1

cT
j Mfimiðt

�
abÞ,

_njðt
þ
abÞ ¼

X2N�1

i¼1

cT
j Mfi _miðt

�
abÞ. (10)

In the derivation of Eq. (10) from Eq. (9), we used the identity cT
j Ia!b ¼ 0. This is true since the entries of cj,

j ¼ 1; 2; . . . ð2N � 1Þ, corresponding to the nonzero entries of Ia!b, namely yl and yr, are equal.
Using the same procedure as above, the transition from stiffness state b to stiffness state a can be obtained

from Eq. (7) as follows:

mjðt
þ
baÞ ¼

X2N�1

i¼1

fT
j Mciniðt

�
baÞ,

_mjðt
þ
baÞ ¼

X2N�1

i¼1

fT
j Mci _niðt

�
baÞ. (11)

If we define F ¼ ½f1;f2; . . . ;fð2N�1Þ� and C ¼ ½c1;c2; . . . ;cð2N�1Þ�, it is clear from Eqs. (10) and (11) that
elements of the matrix CTMF define the mapping between modal coordinates during the transition from
stiffness state a to stiffness state b. The transposed matrix, FTMC, defines the mapping between modal
coordinates during the transition from stiffness state b to stiffness state a. These matrices will be identity
matrices if the two stiffness states are the same and any deviation from the identity structure is a measure of
modal disparity between the two stiffness states [1].
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5. Numerical example

Consider the clamped–clamped beam in Fig. 2 with the material and geometric properties in Table 1. The
natural frequencies of the first four modes of the beam in the two stiffness states are shown in Table 2. Since
the hinge is located at mid-span, the natural frequencies of even numbered modes in the two stiffness states are
identical. This is true because even-numbered modes have zero curvature at mid-span and are not affected by
the state of the hinge, i.e. locked or released. The first four mode shapes of the beam in the two stiffness states
are provided in Fig. 5 for reference.

Using modal truncation, the matrix measure of modal disparity was computed using the first four modes as
follows:

CTMF ¼

0:980 0:000 0:153 0:000

0:000 1:000 0:000 0:000

0:139 0:000 0:949 0:000

0:000 0:000 0:000 1:000

0
BBB@

1
CCCA. (12)
Table 1

Material and geometric properties of clamped–clamped beam in Fig. 2

Material Aluminum

Young’s modulus 71GPa

Density 2710kg=m3

Dimensions 2:0� 0:05� 0:0023m3

Hinge mass 0.182 kg

Table 2

Natural frequencies of the finite element model of the beam in the two stiffness states

oai, obi (rad/s) mode number, i

i ¼ 1 i ¼ 2 i ¼ 3 i ¼ 4

Stiffness state a 1.29 8.34 9.52 27.0

b 2.30 8.34 14.68 27.0
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Fig. 5. Mode shapes of the clamped–clamped beam in the two stiffness states.
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The second and fourth rows and columns of the matrix in Eq. (12) maintain the identity structure. This is
indicative of the fact that even-numbered modes in the two stiffness states are identical. The nonzero elements
in the off-diagonal entries of the matrix are indicative of the presence of modal disparity between the two
stiffness states and indicate how modal energy will be redistributed between odd-numbered modes in these
two states.

To illustrate modal energy redistribution between odd-numbered modes in the two stiffness states, we
consider the scenario where the beam is initially in stiffness state a and vibrating purely in the third mode with
an amplitude A. The total energy of the beam is equal to Ea ¼ 0:5A2o2

a3. It is assumed that there is no
damping in the system and that the brake is activated when the beam passes through its neutral position. Since
miðt
�
abÞ ¼ 0, we have niðt

þ
abÞ ¼ 0 from Eq. (10). The modal velocities in stiffness states b can be computed from

Eq. (10) as follows:

_n1ðtþabÞ

_n2ðtþabÞ

_n3ðtþabÞ

_n4ðtþabÞ

2
666664

3
777775 ¼

0:980 0:000 0:153 0:000

0:000 1:000 0:000 0:000

0:139 0:000 0:949 0:000

0:000 0:000 0:000 1:000

0
BBB@

1
CCCA

0

0

Aoa3

0

2
6664

3
7775. (13)

Clearly, the energy of the beam is redistributed in modes 1 and 3 in stiffness state b. The amount of energy in
these modes are:

Eb1 ¼
1
2
0:1532A2o2

a3 ¼ 0:1532Ea,

Eb2 ¼
1
2
0:9492A2o2

a3 ¼ 0:9492Ea. (14)

It can be easily shown that the amplitudes of these modes are 0:153Aðoa3=ob1Þ ¼ 0:633A and
0:949Aðoa3=ob3Þ ¼ 0:615A, respectively. These results will be validated through experiments in the next
section.

6. Experimental verification

The experimental hardware is shown in Fig. 6. The beam has a pair of piezoelectric transducers1 mounted
on each side at a distance of 5 cm from one of the clamped ends. These transducers are used for excitation.
A single piezoelectric strain sensor2 is mounted on the beam at a distance of 5 cm from the other clamped end.
The position of the sensor and actuators are chosen based on high degree of controllability and observability
of the first three modes of the system. The material and geometric properties of the beam in the experimental
setup are the same as those used in simulations and provided in Table 1. In this table, the hinge mass includes
the mass of the electromagnetic brakes,3 shown in Fig. 6, used for locking and releasing the hinge.

In our experiments, we chose to investigate energy redistribution between the first three modes of the beam.
This was motivated by the fact that modal disparity can be adequately demonstrated by the first three modes
and estimation of the higher modes are more prone to inaccuracies. The first three natural frequencies were
experimentally determined for both stiffness states and are provided in Table 3. The piezoelectric transducers
were used to excite the beam and the strain sensor was used to measure beam vibration. The natural
frequencies were identified as the frequencies of excitation that resulted in maximal amplitude of vibration.
The experimentally determined values show good agreement with the numerically computed values in Table 2.

We first present experimental results for two cases where the beam was initially in stiffness state a
(hinge released) and switched to stiffness state b (hinge locked). For the first case, Case A, the beam was
excited at its second natural frequency in stiffness state a. The stiffness of the beam was switched after
termination of excitation and the results, shown in Fig. 7, indicate that the beam vibrates primarily in its
second mode in stiffness state b. This is expected since the second mode of the two stiffness states are identical.
1Product of Mide Technology Corporation.
2Product of PCB Piezotronics.
3Product of Inertia Dynamics.
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Table 3

Natural frequencies of the beam in the two stiffness states, determined experimentally

oai, obi (rad/s) mode number, i

i ¼ 1 i ¼ 2 i ¼ 3

Stiffness state a 1.40 8.24 9.70

b 2.37 8.20 13.90

piezoelectric strain sensor electromagnatic brakes piezoelectric actuator

Fig. 6. Experimental hardware.
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This can be verified from the elements of the second column vector of the modal disparity matrix CTMF in
Eq. (12). All entries of this vector are zero except for the second entry, which is unity.

For the second case, Case B, the beam was excited at its third natural frequency in stiffness state a. Its
stiffness was switched after termination of excitation and the results are shown in Fig. 8. Since the first and
third elements of the third column vector ofCTMF are nonzero, the beam vibrates in its first and third natural
frequencies in stiffness state b. The amplitude of these modes, immediately after the switch, can be computed
based on our analysis in the last section. These values and the values obtained from experiments are both
presented in Table 4 and they show good conformity. The plots in Fig. 8 indicate a small presence of the
second mode in both stiffness states. It is logical to infer that excitation of the beam introduced the second
mode in stiffness state a and energy associated with this mode transferred directly to the second mode in
stiffness state b.

For the sake of completeness, we present experimental results for one case where the beam was initially in
stiffness state b (hinge locked) and switched to stiffness state a (hinge released). The results for this case, which
Table 4

Modal amplitudes immediately before and after switchings

Stiffness switch Amplitudes before switch Amplitudes after switch

Mode number i Actual/expected values

i ¼ 1 i ¼ 2 i ¼ 3 i ¼ 1 i ¼ 2 i ¼ 3

Case A a! b 0.01 0.88 0.01 0.02/0.01 0.80/0.88 0.01/0.01

Case B a! b 0.02 0.07 0.68 0.36/0.42 0.05/0.07 0.44/0.45

Case C b! a 0.00 0.84 0.01 0.01/0.00 0.79/0.84 xxx/0.00
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Fig. 8. Energy redistribution between modes for Case B: (a) sensor output; (b), (d) and (f) modal amplitudes in state a; (c), (e) and
(g) modal amplitudes in state b.
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we denote as Case C, are shown in Fig. 9 and summarized in Table 4. For this case, the beam vibrates in its
second mode in stiffness state b and energy associated with this mode is entirely transferred to the second
mode in stiffness state a, upon switching. The results for this case are therefore quite similar to that of Case A.
The amplitude of the third mode in stiffness state a could not be measured accurately and is marked ‘‘xxx’’ in
Table 4. The difficulty of the measurement was due to its small magnitude coupled with waxing and waning
due to beating. The beating phenomenon can be attributed to the close proximity of the second and third
natural frequencies of the beam in stiffness state a.

7. Conclusion

This investigation has confirmed that changes in structural stiffness result in modal disparity, and that this
disparity permits energy to be transferred between different sets of spatial modes in a given structure. Finite
element based analysis and systematic experiments have demonstrated that the phenomena can be modeled
and quantitatively predicted. One of the keys in the modeling is to properly account for the physics of the
transition between the different stiffness states, which results in the correct mapping of the modal energies
from one set of modes to another. With these tools in hand, it should be possible to design structural systems
with built-in mechanisms for stiffness variation for favorable modal disparity, and to predict the efficacy of
various proposed switching schemes. Our earlier work [1,2], explored efficient means for funneling energy in a
vibrating structure to a select set of target modes with the underlying objective of reducing the total number of
sensors and actuators required for vibration control. A topology optimization problem was solved to
determine the ‘‘best locations’’ for stiffness change for a predefined set of target modes but the problem can be
easily redefined to determine the target modes for a predefined change in stiffness. Our future studies will
include: transition between multiple stiffness states, or even continually-varying stiffness states; the integration
of modal disparity with structural control, active or passive, wherein one controls only a subset of modes in
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each set, and the repeated exchange of modal energies permits the ultimate dissipation of energy in all the
modes; the use of stiffness changes that are timed in a particular manner so as to inherently dissipate energy in
the system; the implementation of stiffness variation to generate modal disparity in more complex structures,
including plane and space frames and trusses; and various combinations of the above-listed ideas.
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